Source code for dgl.nn.pytorch.conv.densesageconv

"""Torch Module for DenseSAGEConv"""
# pylint: disable= no-member, arguments-differ, invalid-name
from torch import nn
from ....utils import check_eq_shape


[docs]class DenseSAGEConv(nn.Module): """ Description ----------- GraphSAGE layer where the graph structure is given by an adjacency matrix. We recommend to use this module when appying GraphSAGE on dense graphs. Note that we only support gcn aggregator in DenseSAGEConv. Parameters ---------- in_feats : int Input feature size; i.e, the number of dimensions of :math:`h_i^{(l)}`. out_feats : int Output feature size; i.e, the number of dimensions of :math:`h_i^{(l+1)}`. feat_drop : float, optional Dropout rate on features. Default: 0. bias : bool If True, adds a learnable bias to the output. Default: ``True``. norm : callable activation function/layer or None, optional If not None, applies normalization to the updated node features. activation : callable activation function/layer or None, optional If not None, applies an activation function to the updated node features. Default: ``None``. Example ------- >>> import dgl >>> import numpy as np >>> import torch as th >>> from dgl.nn import DenseSAGEConv >>> >>> feat = th.ones(6, 10) >>> adj = th.tensor([[0., 0., 1., 0., 0., 0.], ... [1., 0., 0., 0., 0., 0.], ... [0., 1., 0., 0., 0., 0.], ... [0., 0., 1., 0., 0., 1.], ... [0., 0., 0., 1., 0., 0.], ... [0., 0., 0., 0., 0., 0.]]) >>> conv = DenseSAGEConv(10, 2) >>> res = conv(adj, feat) >>> res tensor([[1.0401, 2.1008], [1.0401, 2.1008], [1.0401, 2.1008], [1.0401, 2.1008], [1.0401, 2.1008], [1.0401, 2.1008]], grad_fn=<AddmmBackward>) See also -------- `SAGEConv <https://docs.dgl.ai/api/python/nn.pytorch.html#sageconv>`__ """ def __init__(self, in_feats, out_feats, feat_drop=0., bias=True, norm=None, activation=None): super(DenseSAGEConv, self).__init__() self._in_feats = in_feats self._out_feats = out_feats self._norm = norm self.feat_drop = nn.Dropout(feat_drop) self.activation = activation self.fc = nn.Linear(in_feats, out_feats, bias=bias) self.reset_parameters() def reset_parameters(self): r""" Description ----------- Reinitialize learnable parameters. Notes ----- The linear weights :math:`W^{(l)}` are initialized using Glorot uniform initialization. """ gain = nn.init.calculate_gain('relu') nn.init.xavier_uniform_(self.fc.weight, gain=gain)
[docs] def forward(self, adj, feat): r""" Description ----------- Compute (Dense) Graph SAGE layer. Parameters ---------- adj : torch.Tensor The adjacency matrix of the graph to apply SAGE Convolution on, when applied to a unidirectional bipartite graph, ``adj`` should be of shape should be of shape :math:`(N_{out}, N_{in})`; when applied to a homo graph, ``adj`` should be of shape :math:`(N, N)`. In both cases, a row represents a destination node while a column represents a source node. feat : torch.Tensor or a pair of torch.Tensor If a torch.Tensor is given, the input feature of shape :math:`(N, D_{in})` where :math:`D_{in}` is size of input feature, :math:`N` is the number of nodes. If a pair of torch.Tensor is given, the pair must contain two tensors of shape :math:`(N_{in}, D_{in})` and :math:`(N_{out}, D_{in})`. Returns ------- torch.Tensor The output feature of shape :math:`(N, D_{out})` where :math:`D_{out}` is size of output feature. """ check_eq_shape(feat) if isinstance(feat, tuple): feat_src = self.feat_drop(feat[0]) feat_dst = self.feat_drop(feat[1]) else: feat_src = feat_dst = self.feat_drop(feat) adj = adj.float().to(feat_src.device) in_degrees = adj.sum(dim=1, keepdim=True) h_neigh = (adj @ feat_src + feat_dst) / (in_degrees + 1) rst = self.fc(h_neigh) # activation if self.activation is not None: rst = self.activation(rst) # normalization if self._norm is not None: rst = self._norm(rst) return rst