dgl.rand_bipartiteο
- dgl.rand_bipartite(utype, etype, vtype, num_src_nodes, num_dst_nodes, num_edges, idtype=torch.int64, device=device(type='cpu'))[source]ο
Generate a random uni-directional bipartite graph and return.
It uniformly chooses
num_edges
from all possible node pairs and form a graph. The random choice is without replacement, which means there will be no multi-edge in the resulting graph.To control the randomness, set the random seed via
dgl.seed()
.- Parameters:
utype (str, optional) β The name of the source node type.
etype (str, optional) β The name of the edge type.
vtype (str, optional) β The name of the destination node type.
num_src_nodes (int) β The number of source nodes.
num_dst_nodes (int) β The number of destination nodes.
num_edges (int) β The number of edges
idtype (int32, int64, optional) β The data type for storing the structure-related graph information such as node and edge IDs. It should be a framework-specific data type object (e.g., torch.int32). By default, DGL uses int64.
device (Device context, optional) β The device of the resulting graph. It should be a framework-specific device object (e.g., torch.device). By default, DGL stores the graph on CPU.
- Returns:
The generated random bipartite graph.
- Return type:
See also
Examples
>>> import dgl >>> dgl.rand_bipartite('user', 'buys', 'game', 50, 100, 10) Graph(num_nodes={'game': 100, 'user': 50}, num_edges={('user', 'buys', 'game'): 10}, metagraph=[('user', 'game', 'buys')])