Source code for dgl.graphbolt.base

"""Base types and utilities for Graph Bolt."""

from collections import deque
from dataclasses import dataclass

import torch
from torch.torch_version import TorchVersion

if TorchVersion(torch.__version__) >= "2.3.0":
    # [TODO][] Remove or refine below
    # check.
    # Due to, we need to check if dill
    # is available before using it. = (

# pylint: disable=wrong-import-position
from import functional_datapipe
from torchdata.datapipes.iter import IterDataPipe

from ..utils import recursive_apply

__all__ = [


[docs]def seed(val): """Set the random seed of Graphbolt. Parameters ---------- val : int The seed. """ torch.ops.graphbolt.set_seed(val)
[docs]def isin(elements, test_elements): """Tests if each element of elements is in test_elements. Returns a boolean tensor of the same shape as elements that is True for elements in test_elements and False otherwise. Parameters ---------- elements : torch.Tensor A 1D tensor represents the input elements. test_elements : torch.Tensor A 1D tensor represents the values to test against for each input. Examples -------- >>> isin(torch.tensor([1, 2, 3, 4]), torch.tensor([2, 3])) tensor([[False, True, True, False]]) """ assert elements.dim() == 1, "Elements should be 1D tensor." assert test_elements.dim() == 1, "Test_elements should be 1D tensor." return torch.ops.graphbolt.isin(elements, test_elements)
if TorchVersion(torch.__version__) >= TorchVersion("2.2.0a0"): @torch.library.impl_abstract("graphbolt::expand_indptr") def expand_indptr_abstract(indptr, dtype, node_ids, output_size): """Abstract implementation of expand_indptr for torch.compile() support.""" if output_size is None: output_size = torch.library.get_ctx().new_dynamic_size() if dtype is None: dtype = node_ids.dtype return indptr.new_empty(output_size, dtype=dtype)
[docs]def expand_indptr(indptr, dtype=None, node_ids=None, output_size=None): """Converts a given indptr offset tensor to a COO format tensor. If node_ids is not given, it is assumed to be equal to torch.arange(indptr.size(0) - 1, dtype=dtype, device=indptr.device). This is equivalent to .. code:: python if node_ids is None: node_ids = torch.arange(len(indptr) - 1, dtype=dtype, device=indptr.device) return Parameters ---------- indptr : torch.Tensor A 1D tensor represents the csc_indptr tensor. dtype : Optional[torch.dtype] The dtype of the returned output tensor. node_ids : Optional[torch.Tensor] A 1D tensor represents the column node ids that the returned tensor will be populated with. output_size : Optional[int] The size of the output tensor. Should be equal to indptr[-1]. Using this argument avoids a stream synchronization to calculate the output shape. Returns ------- torch.Tensor The converted COO tensor with values from node_ids. """ assert indptr.dim() == 1, "Indptr should be 1D tensor." assert not ( node_ids is None and dtype is None ), "One of node_ids or dtype must be given." assert ( node_ids is None or node_ids.dim() == 1 ), "Node_ids should be 1D tensor." if dtype is None: dtype = node_ids.dtype return torch.ops.graphbolt.expand_indptr( indptr, dtype, node_ids, output_size )
[docs]def index_select(tensor, index): """Returns a new tensor which indexes the input tensor along dimension dim using the entries in index. The returned tensor has the same number of dimensions as the original tensor (tensor). The first dimension has the same size as the length of index; other dimensions have the same size as in the original tensor. When tensor is a pinned tensor and index.is_cuda is True, the operation runs on the CUDA device and the returned tensor will also be on CUDA. Parameters ---------- tensor : torch.Tensor The input tensor. index : torch.Tensor The 1-D tensor containing the indices to index. Returns ------- torch.Tensor The indexed input tensor, equivalent to tensor[index]. """ assert index.dim() == 1, "Index should be 1D tensor." return torch.ops.graphbolt.index_select(tensor, index)
[docs]def etype_tuple_to_str(c_etype): """Convert canonical etype from tuple to string. Examples -------- >>> c_etype = ("user", "like", "item") >>> c_etype_str = _etype_tuple_to_str(c_etype) >>> print(c_etype_str) "user:like:item" """ assert isinstance(c_etype, tuple) and len(c_etype) == 3, ( "Passed-in canonical etype should be in format of (str, str, str). " f"But got {c_etype}." ) return CANONICAL_ETYPE_DELIMITER.join(c_etype)
[docs]def etype_str_to_tuple(c_etype): """Convert canonical etype from string to tuple. Examples -------- >>> c_etype_str = "user:like:item" >>> c_etype = _etype_str_to_tuple(c_etype_str) >>> print(c_etype) ("user", "like", "item") """ if isinstance(c_etype, tuple): return c_etype ret = tuple(c_etype.split(CANONICAL_ETYPE_DELIMITER)) assert len(ret) == 3, ( "Passed-in canonical etype should be in format of 'str:str:str'. " f"But got {c_etype}." ) return ret
def seed_type_str_to_ntypes(seed_type, seed_size): """Convert seeds type to node types from string to list. Examples -------- 1. node pairs >>> seed_type = "user:like:item" >>> seed_size = 2 >>> node_type = seed_type_str_to_ntypes(seed_type, seed_size) >>> print(node_type) ["user", "item"] 2. hyperlink >>> seed_type = "query:user:item" >>> seed_size = 3 >>> node_type = seed_type_str_to_ntypes(seed_type, seed_size) >>> print(node_type) ["query", "user", "item"] """ assert isinstance( seed_type, str ), f"Passed-in seed type should be string, but got {type(seed_type)}" ntypes = seed_type.split(CANONICAL_ETYPE_DELIMITER) is_hyperlink = len(ntypes) == seed_size if not is_hyperlink: ntypes = ntypes[::2] return ntypes def apply_to(x, device): """Apply `to` function to object x only if it has `to`.""" return if hasattr(x, "to") else x
[docs]@functional_datapipe("copy_to") class CopyTo(IterDataPipe): """DataPipe that transfers each element yielded from the previous DataPipe to the given device. For MiniBatch, only the related attributes (automatically inferred) will be transferred by default. Functional name: :obj:`copy_to`. When ``data`` has ``to`` method implemented, ``CopyTo`` will be equivalent to .. code:: python for data in datapipe: yield Parameters ---------- datapipe : DataPipe The DataPipe. device : torch.device The PyTorch CUDA device. """ def __init__(self, datapipe, device): super().__init__() self.datapipe = datapipe self.device = device def __iter__(self): for data in self.datapipe: data = recursive_apply(data, apply_to, self.device) yield data
@functional_datapipe("mark_end") class EndMarker(IterDataPipe): """Used to mark the end of a datapipe and is a no-op.""" def __init__(self, datapipe): self.datapipe = datapipe def __iter__(self): yield from self.datapipe @functional_datapipe("buffer") class Bufferer(IterDataPipe): """Buffers items before yielding them. Parameters ---------- datapipe : DataPipe The data pipeline. buffer_size : int, optional The size of the buffer which stores the fetched samples. If data coming from datapipe has latency spikes, consider setting to a higher value. Default is 1. """ def __init__(self, datapipe, buffer_size=1): self.datapipe = datapipe if buffer_size <= 0: raise ValueError( "'buffer_size' is required to be a positive integer." ) self.buffer = deque(maxlen=buffer_size) def __iter__(self): for data in self.datapipe: if len(self.buffer) < self.buffer.maxlen: self.buffer.append(data) else: return_data = self.buffer.popleft() self.buffer.append(data) yield return_data while len(self.buffer) > 0: yield self.buffer.popleft() @functional_datapipe("wait") class Waiter(IterDataPipe): """Calls the wait function of all items.""" def __init__(self, datapipe): self.datapipe = datapipe def __iter__(self): for data in self.datapipe: data.wait() yield data @functional_datapipe("wait_future") class FutureWaiter(IterDataPipe): """Calls the result function of all items and returns their results.""" def __init__(self, datapipe): self.datapipe = datapipe def __iter__(self): for data in self.datapipe: yield data.result() @dataclass class CSCFormatBase: r"""Basic class representing data in Compressed Sparse Column (CSC) format. Examples -------- >>> indptr = torch.tensor([0, 1, 3]) >>> indices = torch.tensor([1, 4, 2]) >>> csc_foramt_base = CSCFormatBase(indptr=indptr, indices=indices) >>> print(csc_format_base.indptr) ... torch.tensor([0, 1, 3]) >>> print(csc_foramt_base) ... torch.tensor([1, 4, 2]) """ indptr: torch.Tensor = None indices: torch.Tensor = None def __init__(self, indptr: torch.Tensor, indices: torch.Tensor): self.indptr = indptr self.indices = indices if not indptr.is_cuda: assert self.indptr[-1] == len( self.indices ), "The last element of indptr should be the same as the length of indices." def __repr__(self) -> str: return _csc_format_base_str(self) def to(self, device: torch.device) -> None: # pylint: disable=invalid-name """Copy `CSCFormatBase` to the specified device using reflection.""" for attr in dir(self): # Only copy member variables. if not callable(getattr(self, attr)) and not attr.startswith("__"): setattr( self, attr, recursive_apply( getattr(self, attr), lambda x: apply_to(x, device) ), ) return self def _csc_format_base_str(csc_format_base: CSCFormatBase) -> str: final_str = "CSCFormatBase(" def _add_indent(_str, indent): lines = _str.split("\n") lines = [lines[0]] + [" " * indent + line for line in lines[1:]] return "\n".join(lines) final_str += ( f"indptr={_add_indent(str(csc_format_base.indptr), 21)},\n" + " " * 14 ) final_str += ( f"indices={_add_indent(str(csc_format_base.indices), 22)},\n" + ")" ) return final_str