Source code for dgl.data.citation_graph

"""Cora, citeseer, pubmed dataset.

(lingfan): following dataset loading and preprocessing code from tkipf/gcn
https://github.com/tkipf/gcn/blob/master/gcn/utils.py
"""
from __future__ import absolute_import

import numpy as np
import pickle as pkl
import networkx as nx
import scipy.sparse as sp
import os, sys

from .utils import save_graphs, load_graphs, save_info, load_info, makedirs, _get_dgl_url
from .utils import generate_mask_tensor
from .utils import deprecate_property, deprecate_function
from .dgl_dataset import DGLBuiltinDataset
from .. import convert
from .. import batch
from .. import backend as F
from ..convert import graph as dgl_graph
from ..convert import from_networkx, to_networkx
from ..transforms import reorder_graph

backend = os.environ.get('DGLBACKEND', 'pytorch')

def _pickle_load(pkl_file):
    if sys.version_info > (3, 0):
        return pkl.load(pkl_file, encoding='latin1')
    else:
        return pkl.load(pkl_file)

class CitationGraphDataset(DGLBuiltinDataset):
    r"""The citation graph dataset, including cora, citeseer and pubmeb.
    Nodes mean authors and edges mean citation relationships.

    Parameters
    -----------
    name: str
      name can be 'cora', 'citeseer' or 'pubmed'.
    raw_dir : str
        Raw file directory to download/contains the input data directory.
        Default: ~/.dgl/
    force_reload : bool
        Whether to reload the dataset. Default: False
    verbose : bool
        Whether to print out progress information. Default: True.
    reverse_edge : bool
        Whether to add reverse edges in graph. Default: True.
    transform : callable, optional
        A transform that takes in a :class:`~dgl.DGLGraph` object and returns
        a transformed version. The :class:`~dgl.DGLGraph` object will be
        transformed before every access.
    reorder : bool
        Whether to reorder the graph using :func:`~dgl.reorder_graph`. Default: False.
    """
    _urls = {
        'cora_v2' : 'dataset/cora_v2.zip',
        'citeseer' : 'dataset/citeseer.zip',
        'pubmed' : 'dataset/pubmed.zip',
    }

    def __init__(self, name, raw_dir=None, force_reload=False,
                 verbose=True, reverse_edge=True, transform=None,
                 reorder=False):
        assert name.lower() in ['cora', 'citeseer', 'pubmed']

        # Previously we use the pre-processing in pygcn (https://github.com/tkipf/pygcn)
        # for Cora, which is slightly different from the one used in the GCN paper
        if name.lower() == 'cora':
            name = 'cora_v2'

        url = _get_dgl_url(self._urls[name])
        self._reverse_edge = reverse_edge
        self._reorder = reorder

        super(CitationGraphDataset, self).__init__(name,
                                                   url=url,
                                                   raw_dir=raw_dir,
                                                   force_reload=force_reload,
                                                   verbose=verbose,
                                                   transform=transform)

    def process(self):
        """Loads input data from data directory and reorder graph for better locality

        ind.name.x => the feature vectors of the training instances as scipy.sparse.csr.csr_matrix object;
        ind.name.tx => the feature vectors of the test instances as scipy.sparse.csr.csr_matrix object;
        ind.name.allx => the feature vectors of both labeled and unlabeled training instances
            (a superset of ind.name.x) as scipy.sparse.csr.csr_matrix object;
        ind.name.y => the one-hot labels of the labeled training instances as numpy.ndarray object;
        ind.name.ty => the one-hot labels of the test instances as numpy.ndarray object;
        ind.name.ally => the labels for instances in ind.name.allx as numpy.ndarray object;
        ind.name.graph => a dict in the format {index: [index_of_neighbor_nodes]} as collections.defaultdict
            object;
        ind.name.test.index => the indices of test instances in graph, for the inductive setting as list object.
        """
        root = self.raw_path
        objnames = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph']
        objects = []
        for i in range(len(objnames)):
            with open("{}/ind.{}.{}".format(root, self.name, objnames[i]), 'rb') as f:
                objects.append(_pickle_load(f))

        x, y, tx, ty, allx, ally, graph = tuple(objects)
        test_idx_reorder = _parse_index_file("{}/ind.{}.test.index".format(root, self.name))
        test_idx_range = np.sort(test_idx_reorder)

        if self.name == 'citeseer':
            # Fix citeseer dataset (there are some isolated nodes in the graph)
            # Find isolated nodes, add them as zero-vecs into the right position
            test_idx_range_full = range(min(test_idx_reorder), max(test_idx_reorder)+1)
            tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
            tx_extended[test_idx_range-min(test_idx_range), :] = tx
            tx = tx_extended
            ty_extended = np.zeros((len(test_idx_range_full), y.shape[1]))
            ty_extended[test_idx_range-min(test_idx_range), :] = ty
            ty = ty_extended

        features = sp.vstack((allx, tx)).tolil()
        features[test_idx_reorder, :] = features[test_idx_range, :]

        if self.reverse_edge:
            graph = nx.DiGraph(nx.from_dict_of_lists(graph))
            g = from_networkx(graph)
        else:
            graph = nx.Graph(nx.from_dict_of_lists(graph))
            edges = list(graph.edges())
            u, v = map(list, zip(*edges))
            g = dgl_graph((u, v))

        onehot_labels = np.vstack((ally, ty))
        onehot_labels[test_idx_reorder, :] = onehot_labels[test_idx_range, :]
        labels = np.argmax(onehot_labels, 1)

        idx_test = test_idx_range.tolist()
        idx_train = range(len(y))
        idx_val = range(len(y), len(y)+500)

        train_mask = generate_mask_tensor(_sample_mask(idx_train, labels.shape[0]))
        val_mask = generate_mask_tensor(_sample_mask(idx_val, labels.shape[0]))
        test_mask = generate_mask_tensor(_sample_mask(idx_test, labels.shape[0]))

        g.ndata['train_mask'] = train_mask
        g.ndata['val_mask'] = val_mask
        g.ndata['test_mask'] = test_mask
        g.ndata['label'] = F.tensor(labels)
        g.ndata['feat'] = F.tensor(_preprocess_features(features), dtype=F.data_type_dict['float32'])
        self._num_classes = onehot_labels.shape[1]
        self._labels = labels
        if self._reorder:
            self._g = reorder_graph(
                g, node_permute_algo='rcmk', edge_permute_algo='dst', store_ids=False)
        else:
            self._g = g

        if self.verbose:
            print('Finished data loading and preprocessing.')
            print('  NumNodes: {}'.format(self._g.number_of_nodes()))
            print('  NumEdges: {}'.format(self._g.number_of_edges()))
            print('  NumFeats: {}'.format(self._g.ndata['feat'].shape[1]))
            print('  NumClasses: {}'.format(self.num_classes))
            print('  NumTrainingSamples: {}'.format(
                F.nonzero_1d(self._g.ndata['train_mask']).shape[0]))
            print('  NumValidationSamples: {}'.format(
                F.nonzero_1d(self._g.ndata['val_mask']).shape[0]))
            print('  NumTestSamples: {}'.format(
                F.nonzero_1d(self._g.ndata['test_mask']).shape[0]))

    def has_cache(self):
        graph_path = os.path.join(self.save_path,
                                  self.save_name + '.bin')
        info_path = os.path.join(self.save_path,
                                 self.save_name + '.pkl')
        if os.path.exists(graph_path) and \
            os.path.exists(info_path):
            return True

        return False

    def save(self):
        """save the graph list and the labels"""
        graph_path = os.path.join(self.save_path,
                                  self.save_name + '.bin')
        info_path = os.path.join(self.save_path,
                                 self.save_name + '.pkl')
        save_graphs(str(graph_path), self._g)
        save_info(str(info_path), {'num_classes': self.num_classes})

    def load(self):
        graph_path = os.path.join(self.save_path,
                                  self.save_name + '.bin')
        info_path = os.path.join(self.save_path,
                                 self.save_name + '.pkl')
        graphs, _ = load_graphs(str(graph_path))

        info = load_info(str(info_path))
        graph = graphs[0]
        self._g = graph
        # for compatability
        graph = graph.clone()
        graph.ndata.pop('train_mask')
        graph.ndata.pop('val_mask')
        graph.ndata.pop('test_mask')
        graph.ndata.pop('feat')
        graph.ndata.pop('label')
        graph = to_networkx(graph)

        self._num_classes = info['num_classes']
        self._g.ndata['train_mask'] = generate_mask_tensor(F.asnumpy(self._g.ndata['train_mask']))
        self._g.ndata['val_mask'] = generate_mask_tensor(F.asnumpy(self._g.ndata['val_mask']))
        self._g.ndata['test_mask'] = generate_mask_tensor(F.asnumpy(self._g.ndata['test_mask']))
        # hack for mxnet compatability

        if self.verbose:
            print('  NumNodes: {}'.format(self._g.number_of_nodes()))
            print('  NumEdges: {}'.format(self._g.number_of_edges()))
            print('  NumFeats: {}'.format(self._g.ndata['feat'].shape[1]))
            print('  NumClasses: {}'.format(self.num_classes))
            print('  NumTrainingSamples: {}'.format(
                F.nonzero_1d(self._g.ndata['train_mask']).shape[0]))
            print('  NumValidationSamples: {}'.format(
                F.nonzero_1d(self._g.ndata['val_mask']).shape[0]))
            print('  NumTestSamples: {}'.format(
                F.nonzero_1d(self._g.ndata['test_mask']).shape[0]))

    def __getitem__(self, idx):
        assert idx == 0, "This dataset has only one graph"
        if self._transform is None:
            return self._g
        else:
            return self._transform(self._g)

    def __len__(self):
        return 1

    @property
    def save_name(self):
        return self.name + '_dgl_graph'

    @property
    def num_labels(self):
        deprecate_property('dataset.num_labels', 'dataset.num_classes')
        return self.num_classes

    @property
    def num_classes(self):
        return self._num_classes

    """ Citation graph is used in many examples
        We preserve these properties for compatability.
    """

    @property
    def train_mask(self):
        deprecate_property('dataset.train_mask', 'g.ndata[\'train_mask\']')
        return F.asnumpy(self._g.ndata['train_mask'])

    @property
    def val_mask(self):
        deprecate_property('dataset.val_mask', 'g.ndata[\'val_mask\']')
        return F.asnumpy(self._g.ndata['val_mask'])

    @property
    def test_mask(self):
        deprecate_property('dataset.test_mask', 'g.ndata[\'test_mask\']')
        return F.asnumpy(self._g.ndata['test_mask'])

    @property
    def labels(self):
        deprecate_property('dataset.label', 'g.ndata[\'label\']')
        return F.asnumpy(self._g.ndata['label'])

    @property
    def features(self):
        deprecate_property('dataset.feat', 'g.ndata[\'feat\']')
        return self._g.ndata['feat']

    @property
    def reverse_edge(self):
        return self._reverse_edge


def _preprocess_features(features):
    """Row-normalize feature matrix and convert to tuple representation"""
    rowsum = np.asarray(features.sum(1))
    r_inv = np.power(rowsum, -1).flatten()
    r_inv[np.isinf(r_inv)] = 0.
    r_mat_inv = sp.diags(r_inv)
    features = r_mat_inv.dot(features)
    return np.asarray(features.todense())

def _parse_index_file(filename):
    """Parse index file."""
    index = []
    for line in open(filename):
        index.append(int(line.strip()))
    return index

def _sample_mask(idx, l):
    """Create mask."""
    mask = np.zeros(l)
    mask[idx] = 1
    return mask

[docs]class CoraGraphDataset(CitationGraphDataset): r""" Cora citation network dataset. .. deprecated:: 0.5.0 - ``graph`` is deprecated, it is replaced by: >>> dataset = CoraGraphDataset() >>> graph = dataset[0] - ``train_mask`` is deprecated, it is replaced by: >>> dataset = CoraGraphDataset() >>> graph = dataset[0] >>> train_mask = graph.ndata['train_mask'] - ``val_mask`` is deprecated, it is replaced by: >>> dataset = CoraGraphDataset() >>> graph = dataset[0] >>> val_mask = graph.ndata['val_mask'] - ``test_mask`` is deprecated, it is replaced by: >>> dataset = CoraGraphDataset() >>> graph = dataset[0] >>> test_mask = graph.ndata['test_mask'] - ``labels`` is deprecated, it is replaced by: >>> dataset = CoraGraphDataset() >>> graph = dataset[0] >>> labels = graph.ndata['label'] - ``feat`` is deprecated, it is replaced by: >>> dataset = CoraGraphDataset() >>> graph = dataset[0] >>> feat = graph.ndata['feat'] Nodes mean paper and edges mean citation relationships. Each node has a predefined feature with 1433 dimensions. The dataset is designed for the node classification task. The task is to predict the category of certain paper. Statistics: - Nodes: 2708 - Edges: 10556 - Number of Classes: 7 - Label split: - Train: 140 - Valid: 500 - Test: 1000 Parameters ---------- raw_dir : str Raw file directory to download/contains the input data directory. Default: ~/.dgl/ force_reload : bool Whether to reload the dataset. Default: False verbose : bool Whether to print out progress information. Default: True. reverse_edge : bool Whether to add reverse edges in graph. Default: True. transform : callable, optional A transform that takes in a :class:`~dgl.DGLGraph` object and returns a transformed version. The :class:`~dgl.DGLGraph` object will be transformed before every access. reorder : bool Whether to reorder the graph using :func:`~dgl.reorder_graph`. Default: False. Attributes ---------- num_classes: int Number of label classes graph: networkx.DiGraph Graph structure train_mask: numpy.ndarray Mask of training nodes val_mask: numpy.ndarray Mask of validation nodes test_mask: numpy.ndarray Mask of test nodes labels: numpy.ndarray Ground truth labels of each node features: Tensor Node features Notes ----- The node feature is row-normalized. Examples -------- >>> dataset = CoraGraphDataset() >>> g = dataset[0] >>> num_class = dataset.num_classes >>> >>> # get node feature >>> feat = g.ndata['feat'] >>> >>> # get data split >>> train_mask = g.ndata['train_mask'] >>> val_mask = g.ndata['val_mask'] >>> test_mask = g.ndata['test_mask'] >>> >>> # get labels >>> label = g.ndata['label'] """ def __init__(self, raw_dir=None, force_reload=False, verbose=True, reverse_edge=True, transform=None, reorder=False): name = 'cora' super(CoraGraphDataset, self).__init__(name, raw_dir, force_reload, verbose, reverse_edge, transform, reorder)
[docs] def __getitem__(self, idx): r"""Gets the graph object Parameters ----------- idx: int Item index, CoraGraphDataset has only one graph object Return ------ :class:`dgl.DGLGraph` graph structure, node features and labels. - ``ndata['train_mask']``: mask for training node set - ``ndata['val_mask']``: mask for validation node set - ``ndata['test_mask']``: mask for test node set - ``ndata['feat']``: node feature - ``ndata['label']``: ground truth labels """ return super(CoraGraphDataset, self).__getitem__(idx)
[docs] def __len__(self): r"""The number of graphs in the dataset.""" return super(CoraGraphDataset, self).__len__()
[docs]class CiteseerGraphDataset(CitationGraphDataset): r""" Citeseer citation network dataset. .. deprecated:: 0.5.0 - ``graph`` is deprecated, it is replaced by: >>> dataset = CiteseerGraphDataset() >>> graph = dataset[0] - ``train_mask`` is deprecated, it is replaced by: >>> dataset = CiteseerGraphDataset() >>> graph = dataset[0] >>> train_mask = graph.ndata['train_mask'] - ``val_mask`` is deprecated, it is replaced by: >>> dataset = CiteseerGraphDataset() >>> graph = dataset[0] >>> val_mask = graph.ndata['val_mask'] - ``test_mask`` is deprecated, it is replaced by: >>> dataset = CiteseerGraphDataset() >>> graph = dataset[0] >>> test_mask = graph.ndata['test_mask'] - ``labels`` is deprecated, it is replaced by: >>> dataset = CiteseerGraphDataset() >>> graph = dataset[0] >>> labels = graph.ndata['label'] - ``feat`` is deprecated, it is replaced by: >>> dataset = CiteseerGraphDataset() >>> graph = dataset[0] >>> feat = graph.ndata['feat'] Nodes mean scientific publications and edges mean citation relationships. Each node has a predefined feature with 3703 dimensions. The dataset is designed for the node classification task. The task is to predict the category of certain publication. Statistics: - Nodes: 3327 - Edges: 9228 - Number of Classes: 6 - Label Split: - Train: 120 - Valid: 500 - Test: 1000 Parameters ----------- raw_dir : str Raw file directory to download/contains the input data directory. Default: ~/.dgl/ force_reload : bool Whether to reload the dataset. Default: False verbose : bool Whether to print out progress information. Default: True. reverse_edge : bool Whether to add reverse edges in graph. Default: True. transform : callable, optional A transform that takes in a :class:`~dgl.DGLGraph` object and returns a transformed version. The :class:`~dgl.DGLGraph` object will be transformed before every access. reorder : bool Whether to reorder the graph using :func:`~dgl.reorder_graph`. Default: False. Attributes ---------- num_classes: int Number of label classes graph: networkx.DiGraph Graph structure train_mask: numpy.ndarray Mask of training nodes val_mask: numpy.ndarray Mask of validation nodes test_mask: numpy.ndarray Mask of test nodes labels: numpy.ndarray Ground truth labels of each node features: Tensor Node features Notes ----- The node feature is row-normalized. In citeseer dataset, there are some isolated nodes in the graph. These isolated nodes are added as zero-vecs into the right position. Examples -------- >>> dataset = CiteseerGraphDataset() >>> g = dataset[0] >>> num_class = dataset.num_classes >>> >>> # get node feature >>> feat = g.ndata['feat'] >>> >>> # get data split >>> train_mask = g.ndata['train_mask'] >>> val_mask = g.ndata['val_mask'] >>> test_mask = g.ndata['test_mask'] >>> >>> # get labels >>> label = g.ndata['label'] """ def __init__(self, raw_dir=None, force_reload=False, verbose=True, reverse_edge=True, transform=None, reorder=False): name = 'citeseer' super(CiteseerGraphDataset, self).__init__(name, raw_dir, force_reload, verbose, reverse_edge, transform, reorder)
[docs] def __getitem__(self, idx): r"""Gets the graph object Parameters ----------- idx: int Item index, CiteseerGraphDataset has only one graph object Return ------ :class:`dgl.DGLGraph` graph structure, node features and labels. - ``ndata['train_mask']``: mask for training node set - ``ndata['val_mask']``: mask for validation node set - ``ndata['test_mask']``: mask for test node set - ``ndata['feat']``: node feature - ``ndata['label']``: ground truth labels """ return super(CiteseerGraphDataset, self).__getitem__(idx)
[docs] def __len__(self): r"""The number of graphs in the dataset.""" return super(CiteseerGraphDataset, self).__len__()
[docs]class PubmedGraphDataset(CitationGraphDataset): r""" Pubmed citation network dataset. .. deprecated:: 0.5.0 - ``graph`` is deprecated, it is replaced by: >>> dataset = PubmedGraphDataset() >>> graph = dataset[0] - ``train_mask`` is deprecated, it is replaced by: >>> dataset = PubmedGraphDataset() >>> graph = dataset[0] >>> train_mask = graph.ndata['train_mask'] - ``val_mask`` is deprecated, it is replaced by: >>> dataset = PubmedGraphDataset() >>> graph = dataset[0] >>> val_mask = graph.ndata['val_mask'] - ``test_mask`` is deprecated, it is replaced by: >>> dataset = PubmedGraphDataset() >>> graph = dataset[0] >>> test_mask = graph.ndata['test_mask'] - ``labels`` is deprecated, it is replaced by: >>> dataset = PubmedGraphDataset() >>> graph = dataset[0] >>> labels = graph.ndata['label'] - ``feat`` is deprecated, it is replaced by: >>> dataset = PubmedGraphDataset() >>> graph = dataset[0] >>> feat = graph.ndata['feat'] Nodes mean scientific publications and edges mean citation relationships. Each node has a predefined feature with 500 dimensions. The dataset is designed for the node classification task. The task is to predict the category of certain publication. Statistics: - Nodes: 19717 - Edges: 88651 - Number of Classes: 3 - Label Split: - Train: 60 - Valid: 500 - Test: 1000 Parameters ----------- raw_dir : str Raw file directory to download/contains the input data directory. Default: ~/.dgl/ force_reload : bool Whether to reload the dataset. Default: False verbose : bool Whether to print out progress information. Default: True. reverse_edge : bool Whether to add reverse edges in graph. Default: True. transform : callable, optional A transform that takes in a :class:`~dgl.DGLGraph` object and returns a transformed version. The :class:`~dgl.DGLGraph` object will be transformed before every access. reorder : bool Whether to reorder the graph using :func:`~dgl.reorder_graph`. Default: False. Attributes ---------- num_classes: int Number of label classes graph: networkx.DiGraph Graph structure train_mask: numpy.ndarray Mask of training nodes val_mask: numpy.ndarray Mask of validation nodes test_mask: numpy.ndarray Mask of test nodes labels: numpy.ndarray Ground truth labels of each node features: Tensor Node features Notes ----- The node feature is row-normalized. Examples -------- >>> dataset = PubmedGraphDataset() >>> g = dataset[0] >>> num_class = dataset.num_of_class >>> >>> # get node feature >>> feat = g.ndata['feat'] >>> >>> # get data split >>> train_mask = g.ndata['train_mask'] >>> val_mask = g.ndata['val_mask'] >>> test_mask = g.ndata['test_mask'] >>> >>> # get labels >>> label = g.ndata['label'] """ def __init__(self, raw_dir=None, force_reload=False, verbose=True, reverse_edge=True, transform=None, reorder=False): name = 'pubmed' super(PubmedGraphDataset, self).__init__(name, raw_dir, force_reload, verbose, reverse_edge, transform, reorder)
[docs] def __getitem__(self, idx): r"""Gets the graph object Parameters ----------- idx: int Item index, PubmedGraphDataset has only one graph object Return ------ :class:`dgl.DGLGraph` graph structure, node features and labels. - ``ndata['train_mask']``: mask for training node set - ``ndata['val_mask']``: mask for validation node set - ``ndata['test_mask']``: mask for test node set - ``ndata['feat']``: node feature - ``ndata['label']``: ground truth labels """ return super(PubmedGraphDataset, self).__getitem__(idx)
[docs] def __len__(self): r"""The number of graphs in the dataset.""" return super(PubmedGraphDataset, self).__len__()
def load_cora(raw_dir=None, force_reload=False, verbose=True, reverse_edge=True, transform=None): """Get CoraGraphDataset Parameters ----------- raw_dir : str Raw file directory to download/contains the input data directory. Default: ~/.dgl/ force_reload : bool Whether to reload the dataset. Default: False verbose : bool Whether to print out progress information. Default: True. reverse_edge : bool Whether to add reverse edges in graph. Default: True. transform : callable, optional A transform that takes in a :class:`~dgl.DGLGraph` object and returns a transformed version. The :class:`~dgl.DGLGraph` object will be transformed before every access. Return ------- CoraGraphDataset """ data = CoraGraphDataset(raw_dir, force_reload, verbose, reverse_edge, transform) return data def load_citeseer(raw_dir=None, force_reload=False, verbose=True, reverse_edge=True, transform=None): """Get CiteseerGraphDataset Parameters ----------- raw_dir : str Raw file directory to download/contains the input data directory. Default: ~/.dgl/ force_reload : bool Whether to reload the dataset. Default: False verbose : bool Whether to print out progress information. Default: True. reverse_edge : bool Whether to add reverse edges in graph. Default: True. transform : callable, optional A transform that takes in a :class:`~dgl.DGLGraph` object and returns a transformed version. The :class:`~dgl.DGLGraph` object will be transformed before every access. Return ------- CiteseerGraphDataset """ data = CiteseerGraphDataset(raw_dir, force_reload, verbose, reverse_edge, transform) return data def load_pubmed(raw_dir=None, force_reload=False, verbose=True, reverse_edge=True, transform=None): """Get PubmedGraphDataset Parameters ----------- raw_dir : str Raw file directory to download/contains the input data directory. Default: ~/.dgl/ force_reload : bool Whether to reload the dataset. Default: False verbose : bool Whether to print out progress information. Default: True. reverse_edge : bool Whether to add reverse edges in graph. Default: True. transform : callable, optional A transform that takes in a :class:`~dgl.DGLGraph` object and returns a transformed version. The :class:`~dgl.DGLGraph` object will be transformed before every access. Return ------- PubmedGraphDataset """ data = PubmedGraphDataset(raw_dir, force_reload, verbose, reverse_edge, transform) return data class CoraBinary(DGLBuiltinDataset): """A mini-dataset for binary classification task using Cora. After loaded, it has following members: graphs : list of :class:`~dgl.DGLGraph` pmpds : list of :class:`scipy.sparse.coo_matrix` labels : list of :class:`numpy.ndarray` Parameters ----------- raw_dir : str Raw file directory to download/contains the input data directory. Default: ~/.dgl/ force_reload : bool Whether to reload the dataset. Default: False verbose: bool Whether to print out progress information. Default: True. transform : callable, optional A transform that takes in a :class:`~dgl.DGLGraph` object and returns a transformed version. The :class:`~dgl.DGLGraph` object will be transformed before every access. """ def __init__(self, raw_dir=None, force_reload=False, verbose=True, transform=None): name = 'cora_binary' url = _get_dgl_url('dataset/cora_binary.zip') super(CoraBinary, self).__init__(name, url=url, raw_dir=raw_dir, force_reload=force_reload, verbose=verbose, transform=transform) def process(self): root = self.raw_path # load graphs self.graphs = [] with open("{}/graphs.txt".format(root), 'r') as f: elist = [] for line in f.readlines(): if line.startswith('graph'): if len(elist) != 0: self.graphs.append(dgl_graph(tuple(zip(*elist)))) elist = [] else: u, v = line.strip().split(' ') elist.append((int(u), int(v))) if len(elist) != 0: self.graphs.append(dgl_graph(tuple(zip(*elist)))) with open("{}/pmpds.pkl".format(root), 'rb') as f: self.pmpds = _pickle_load(f) self.labels = [] with open("{}/labels.txt".format(root), 'r') as f: cur = [] for line in f.readlines(): if line.startswith('graph'): if len(cur) != 0: self.labels.append(np.asarray(cur)) cur = [] else: cur.append(int(line.strip())) if len(cur) != 0: self.labels.append(np.asarray(cur)) # sanity check assert len(self.graphs) == len(self.pmpds) assert len(self.graphs) == len(self.labels) def has_cache(self): graph_path = os.path.join(self.save_path, self.save_name + '.bin') if os.path.exists(graph_path): return True return False def save(self): """save the graph list and the labels""" graph_path = os.path.join(self.save_path, self.save_name + '.bin') labels = {} for i, label in enumerate(self.labels): labels['{}'.format(i)] = F.tensor(label) save_graphs(str(graph_path), self.graphs, labels) if self.verbose: print('Done saving data into cached files.') def load(self): graph_path = os.path.join(self.save_path, self.save_name + '.bin') self.graphs, labels = load_graphs(str(graph_path)) self.labels = [] for i in range(len(labels)): self.labels.append(F.asnumpy(labels['{}'.format(i)])) # load pmpds under self.raw_path with open("{}/pmpds.pkl".format(self.raw_path), 'rb') as f: self.pmpds = _pickle_load(f) if self.verbose: print('Done loading data into cached files.') # sanity check assert len(self.graphs) == len(self.pmpds) assert len(self.graphs) == len(self.labels) def __len__(self): return len(self.graphs) def __getitem__(self, i): r"""Gets the idx-th sample. Parameters ----------- idx : int The sample index. Returns ------- (dgl.DGLGraph, scipy.sparse.coo_matrix, int) The graph, scipy sparse coo_matrix and its label. """ if self._transform is None: g = self.graphs[i] else: g = self._transform(self.graphs[i]) return (g, self.pmpds[i], self.labels[i]) @property def save_name(self): return self.name + '_dgl_graph' @staticmethod def collate_fn(cur): graphs, pmpds, labels = zip(*cur) batched_graphs = batch.batch(graphs) batched_pmpds = sp.block_diag(pmpds) batched_labels = np.concatenate(labels, axis=0) return batched_graphs, batched_pmpds, batched_labels def _normalize(mx): """Row-normalize sparse matrix""" rowsum = np.asarray(mx.sum(1)) r_inv = np.power(rowsum, -1).flatten() r_inv[np.isinf(r_inv)] = 0. r_mat_inv = sp.diags(r_inv) mx = r_mat_inv.dot(mx) return mx def _encode_onehot(labels): classes = list(sorted(set(labels))) classes_dict = {c: np.identity(len(classes))[i, :] for i, c in enumerate(classes)} labels_onehot = np.asarray(list(map(classes_dict.get, labels)), dtype=np.int32) return labels_onehot