Source code for dgl.nn.tensorflow.conv.sageconv

"""Tensorflow Module for GraphSAGE layer"""
# pylint: disable= no-member, arguments-differ, invalid-name
import tensorflow as tf
from tensorflow.keras import layers

from .... import function as fn
from ....utils import expand_as_pair, check_eq_shape


[docs]class SAGEConv(layers.Layer): r""" Description ----------- GraphSAGE layer from paper `Inductive Representation Learning on Large Graphs <https://arxiv.org/pdf/1706.02216.pdf>`__. .. math:: h_{\mathcal{N}(i)}^{(l+1)} &= \mathrm{aggregate} \left(\{h_{j}^{l}, \forall j \in \mathcal{N}(i) \}\right) h_{i}^{(l+1)} &= \sigma \left(W \cdot \mathrm{concat} (h_{i}^{l}, h_{\mathcal{N}(i)}^{l+1}) \right) h_{i}^{(l+1)} &= \mathrm{norm}(h_{i}^{l}) Parameters ---------- in_feats : int, or pair of ints Input feature size; i.e, the number of dimensions of :math:`h_i^{(l)}`. GATConv can be applied on homogeneous graph and unidirectional `bipartite graph <https://docs.dgl.ai/generated/dgl.bipartite.html?highlight=bipartite>`__. If the layer applies on a unidirectional bipartite graph, ``in_feats`` specifies the input feature size on both the source and destination nodes. If a scalar is given, the source and destination node feature size would take the same value. If aggregator type is ``gcn``, the feature size of source and destination nodes are required to be the same. out_feats : int Output feature size; i.e, the number of dimensions of :math:`h_i^{(l+1)}`. feat_drop : float Dropout rate on features, default: ``0``. aggregator_type : str Aggregator type to use (``mean``, ``gcn``, ``pool``, ``lstm``). bias : bool If True, adds a learnable bias to the output. Default: ``True``. norm : callable activation function/layer or None, optional If not None, applies normalization to the updated node features. activation : callable activation function/layer or None, optional If not None, applies an activation function to the updated node features. Default: ``None``. Examples -------- >>> import dgl >>> import numpy as np >>> import tensorflow as tf >>> from dgl.nn import SAGEConv >>> >>> # Case 1: Homogeneous graph >>> with tf.device("CPU:0"): >>> g = dgl.graph(([0,1,2,3,2,5], [1,2,3,4,0,3])) >>> g = dgl.add_self_loop(g) >>> feat = tf.ones((6, 10)) >>> conv = SAGEConv(10, 2, 'pool') >>> res = conv(g, feat) >>> res <tf.Tensor: shape=(6, 2), dtype=float32, numpy= array([[-3.6633523 , -0.90711546], [-3.6633523 , -0.90711546], [-3.6633523 , -0.90711546], [-3.6633523 , -0.90711546], [-3.6633523 , -0.90711546], [-3.6633523 , -0.90711546]], dtype=float32)> >>> # Case 2: Unidirectional bipartite graph >>> with tf.device("CPU:0"): >>> u = [0, 1, 0, 0, 1] >>> v = [0, 1, 2, 3, 2] >>> g = dgl.bipartite((u, v)) >>> u_fea = tf.convert_to_tensor(np.random.rand(2, 5)) >>> v_fea = tf.convert_to_tensor(np.random.rand(4, 5)) >>> conv = SAGEConv((5, 10), 2, 'mean') >>> res = conv(g, (u_fea, v_fea)) >>> res <tf.Tensor: shape=(4, 2), dtype=float32, numpy= array([[-0.59453356, -0.4055441 ], [-0.47459763, -0.717764 ], [ 0.3221837 , -0.29876417], [-0.63356155, 0.09390211]], dtype=float32)> """ def __init__(self, in_feats, out_feats, aggregator_type, feat_drop=0., bias=True, norm=None, activation=None): super(SAGEConv, self).__init__() self._in_src_feats, self._in_dst_feats = expand_as_pair(in_feats) self._out_feats = out_feats self._aggre_type = aggregator_type self.norm = norm self.feat_drop = layers.Dropout(feat_drop) self.activation = activation # aggregator type: mean/pool/lstm/gcn if aggregator_type == 'pool': self.fc_pool = layers.Dense(self._in_src_feats) if aggregator_type == 'lstm': self.lstm = layers.LSTM(units=self._in_src_feats) if aggregator_type != 'gcn': self.fc_self = layers.Dense(out_feats, use_bias=bias) self.fc_neigh = layers.Dense(out_feats, use_bias=bias) def _lstm_reducer(self, nodes): """LSTM reducer NOTE(zihao): lstm reducer with default schedule (degree bucketing) is slow, we could accelerate this with degree padding in the future. """ m = nodes.mailbox['m'] # (B, L, D) rst = self.lstm(m) return {'neigh': rst} def call(self, graph, feat): r""" Description ----------- Compute GraphSAGE layer. Parameters ---------- graph : DGLGraph The graph. feat : tf.Tensor or pair of tf.Tensor If a tf.Tensor is given, it represents the input feature of shape :math:`(N, D_{in})` where :math:`D_{in}` is size of input feature, :math:`N` is the number of nodes. If a pair of tf.Tensor is given, the pair must contain two tensors of shape :math:`(N_{in}, D_{in_{src}})` and :math:`(N_{out}, D_{in_{dst}})`. Returns ------- tf.Tensor The output feature of shape :math:`(N, D_{out})` where :math:`D_{out}` is size of output feature. """ with graph.local_scope(): if isinstance(feat, tuple): feat_src = self.feat_drop(feat[0]) feat_dst = self.feat_drop(feat[1]) else: feat_src = feat_dst = self.feat_drop(feat) if graph.is_block: feat_dst = feat_src[:graph.number_of_dst_nodes()] h_self = feat_dst # Handle the case of graphs without edges if graph.number_of_edges() == 0: graph.dstdata['neigh'] = tf.cast(tf.zeros( (graph.number_of_dst_nodes(), self._in_src_feats)), tf.float32) if self._aggre_type == 'mean': graph.srcdata['h'] = feat_src graph.update_all(fn.copy_src('h', 'm'), fn.mean('m', 'neigh')) h_neigh = graph.dstdata['neigh'] elif self._aggre_type == 'gcn': check_eq_shape(feat) graph.srcdata['h'] = feat_src graph.dstdata['h'] = feat_dst # same as above if homogeneous graph.update_all(fn.copy_src('h', 'm'), fn.sum('m', 'neigh')) # divide in_degrees degs = tf.cast(graph.in_degrees(), tf.float32) h_neigh = (graph.dstdata['neigh'] + graph.dstdata['h'] ) / (tf.expand_dims(degs, -1) + 1) elif self._aggre_type == 'pool': graph.srcdata['h'] = tf.nn.relu(self.fc_pool(feat_src)) graph.update_all(fn.copy_src('h', 'm'), fn.max('m', 'neigh')) h_neigh = graph.dstdata['neigh'] elif self._aggre_type == 'lstm': graph.srcdata['h'] = feat_src graph.update_all(fn.copy_src('h', 'm'), self._lstm_reducer) h_neigh = graph.dstdata['neigh'] else: raise KeyError( 'Aggregator type {} not recognized.'.format(self._aggre_type)) # GraphSAGE GCN does not require fc_self. if self._aggre_type == 'gcn': rst = self.fc_neigh(h_neigh) else: rst = self.fc_self(h_self) + self.fc_neigh(h_neigh) # activation if self.activation is not None: rst = self.activation(rst) # normalization if self.norm is not None: rst = self.norm(rst) return rst