"""MXNet Module for DenseGraphConv"""
# pylint: disable= no-member, arguments-differ, invalid-name
import math
import mxnet as mx
from mxnet import nd
from mxnet.gluon import nn
[docs]class DenseGraphConv(nn.Block):
"""
Description
-----------
Graph Convolutional Network layer where the graph structure
is given by an adjacency matrix.
We recommend user to use this module when applying graph convolution on
dense graphs.
Parameters
----------
in_feats : int
Input feature size; i.e, the number of dimensions of :math:`h_j^{(l)}`.
out_feats : int
Output feature size; i.e., the number of dimensions of :math:`h_i^{(l+1)}`.
norm : str, optional
How to apply the normalizer. If is `'right'`, divide the aggregated messages
by each node's in-degrees, which is equivalent to averaging the received messages.
If is `'none'`, no normalization is applied. Default is `'both'`,
where the :math:`c_{ij}` in the paper is applied.
bias : bool, optional
If True, adds a learnable bias to the output. Default: ``True``.
activation : callable activation function/layer or None, optional
If not None, applies an activation function to the updated node features.
Default: ``None``.
Notes
-----
Zero in-degree nodes will lead to all-zero output. A common practice
to avoid this is to add a self-loop for each node in the graph,
which can be achieved by setting the diagonal of the adjacency matrix to be 1.
See also
--------
`GraphConv <https://docs.dgl.ai/api/python/nn.pytorch.html#graphconv>`__
"""
def __init__(self,
in_feats,
out_feats,
norm='both',
bias=True,
activation=None):
super(DenseGraphConv, self).__init__()
self._in_feats = in_feats
self._out_feats = out_feats
self._norm = norm
with self.name_scope():
self.weight = self.params.get('weight', shape=(in_feats, out_feats),
init=mx.init.Xavier(magnitude=math.sqrt(2.0)))
if bias:
self.bias = self.params.get('bias', shape=(out_feats,),
init=mx.init.Zero())
else:
self.bias = None
self._activation = activation
[docs] def forward(self, adj, feat):
r"""
Description
-----------
Compute (Dense) Graph Convolution layer.
Parameters
----------
adj : mxnet.NDArray
The adjacency matrix of the graph to apply Graph Convolution on, when
applied to a unidirectional bipartite graph, ``adj`` should be of shape
should be of shape :math:`(N_{out}, N_{in})`; when applied to a homo
graph, ``adj`` should be of shape :math:`(N, N)`. In both cases,
a row represents a destination node while a column represents a source
node.
feat : mxnet.NDArray
The input feature.
Returns
-------
mxnet.NDArray
The output feature of shape :math:`(N, D_{out})` where :math:`D_{out}`
is size of output feature.
"""
adj = adj.astype(feat.dtype).as_in_context(feat.context)
src_degrees = nd.clip(adj.sum(axis=0), a_min=1, a_max=float('inf'))
dst_degrees = nd.clip(adj.sum(axis=1), a_min=1, a_max=float('inf'))
feat_src = feat
if self._norm == 'both':
norm_src = nd.power(src_degrees, -0.5)
shp_src = norm_src.shape + (1,) * (feat.ndim - 1)
norm_src = norm_src.reshape(shp_src).as_in_context(feat.context)
feat_src = feat_src * norm_src
if self._in_feats > self._out_feats:
# mult W first to reduce the feature size for aggregation.
feat_src = nd.dot(feat_src, self.weight.data(feat_src.context))
rst = nd.dot(adj, feat_src)
else:
# aggregate first then mult W
rst = nd.dot(adj, feat_src)
rst = nd.dot(rst, self.weight.data(feat_src.context))
if self._norm != 'none':
if self._norm == 'both':
norm_dst = nd.power(dst_degrees, -0.5)
else: # right
norm_dst = 1.0 / dst_degrees
shp_dst = norm_dst.shape + (1,) * (feat.ndim - 1)
norm_dst = norm_dst.reshape(shp_dst).as_in_context(feat.context)
rst = rst * norm_dst
if self.bias is not None:
rst = rst + self.bias.data(feat.context)
if self._activation is not None:
rst = self._activation(rst)
return rst