dgl.udf.EdgeBatch.edges¶
-
EdgeBatch.
edges
()[source]¶ Return the edges in the batch.
- Returns
(U, V, EID) – The edges in the batch. For each \(i\), \((U[i], V[i])\) is an edge from \(U[i]\) to \(V[i]\) with ID \(EID[i]\).
- Return type
(Tensor, Tensor, Tensor)
Examples
The following example uses PyTorch backend.
>>> import dgl >>> import torch
>>> # Instantiate a graph. >>> g = dgl.graph((torch.tensor([0, 1, 1]), torch.tensor([1, 1, 0])))
>>> # Define a UDF that retrieves and concatenates the end nodes of the >>> # edges. >>> def edge_udf(edges): >>> src, dst, _ = edges.edges() >>> return {'uv': torch.stack([src, dst], dim=1).float()}
>>> # Create a feature 'uv' with the end nodes of the edges. >>> g.apply_edges(edge_udf) >>> g.edata['uv'] tensor([[0., 1.], [1., 1.], [1., 0.]])
>>> # Use edge UDF in message passing. >>> import dgl.function as fn >>> g.update_all(edge_udf, fn.sum('uv', 'h')) >>> g.ndata['h'] tensor([[1., 0.], [1., 2.]])