dgl.udf.EdgeBatch.data¶
-
property
EdgeBatch.
data
¶ Return a view of the edge features for the edges in the batch.
Examples
The following example uses PyTorch backend.
>>> import dgl >>> import torch
>>> # Instantiate a graph and set an edge feature 'h'. >>> g = dgl.graph((torch.tensor([0, 1, 1]), torch.tensor([1, 1, 0]))) >>> g.edata['h'] = torch.tensor([[1.], [1.], [1.]])
>>> # Define a UDF that retrieves the feature 'h' for all edges. >>> def edge_udf(edges): >>> # edges.data['h'] is a tensor of shape (E, 1), >>> # where E is the number of edges in the batch. >>> return {'data': edges.data['h']}
>>> # Make a copy of the feature with name 'data'. >>> g.apply_edges(edge_udf) >>> g.edata['data'] tensor([[1.], [1.], [1.]])
>>> # Use edge UDF in message passing, which is equivalent to >>> # dgl.function.copy_e. >>> import dgl.function as fn >>> g.update_all(edge_udf, fn.sum('data', 'h')) >>> g.ndata['h'] tensor([[1.], [2.]])