GINDataset¶
-
class
dgl.data.
GINDataset
(name, self_loop, degree_as_nlabel=False, raw_dir=None, force_reload=False, verbose=False, transform=None)[source]¶ Bases:
dgl.data.dgl_dataset.DGLBuiltinDataset
Dataset Class for How Powerful Are Graph Neural Networks?.
This is adapted from https://github.com/weihua916/powerful-gnns/blob/master/dataset.zip.
The class provides an interface for nine datasets used in the paper along with the paper-specific settings. The datasets are
'MUTAG'
,'COLLAB'
,'IMDBBINARY'
,'IMDBMULTI'
,'NCI1'
,'PROTEINS'
,'PTC'
,'REDDITBINARY'
,'REDDITMULTI5K'
.If
degree_as_nlabel
is set toFalse
, thenndata['label']
stores the provided node label, otherwisendata['label']
stores the node in-degrees.For graphs that have node attributes,
ndata['attr']
stores the node attributes. For graphs that have no attribute,ndata['attr']
stores the corresponding one-hot encoding ofndata['label']
.- Parameters
name (str) – dataset name, one of (
'MUTAG'
,'COLLAB'
,'IMDBBINARY'
,'IMDBMULTI'
,'NCI1'
,'PROTEINS'
,'PTC'
,'REDDITBINARY'
,'REDDITMULTI5K'
)self_loop (bool) – add self to self edge if true
degree_as_nlabel (bool) – take node degree as label and feature if true
transform (callable, optional) – A transform that takes in a
DGLGraph
object and returns a transformed version. TheDGLGraph
object will be transformed before every access.
Examples
The dataset instance is an iterable
Batch the graphs and labels for mini-batch training
>>> graphs, labels = zip(*[data[i] for i in range(16)]) >>> batched_graphs = dgl.batch(graphs) >>> batched_labels = torch.tensor(labels) >>> batched_graphs Graph(num_nodes=330, num_edges=748, ndata_schemes={'label': Scheme(shape=(), dtype=torch.int64), 'attr': Scheme(shape=(7,), dtype=torch.float32)} edata_schemes={})