Source code for dgl.sparse.elementwise_op

# pylint: disable=anomalous-backslash-in-string
"""DGL elementwise operator module."""
from typing import Union

from .diag_matrix import DiagMatrix
from .sparse_matrix import SparseMatrix
from .utils import Scalar

__all__ = ["add", "sub", "mul", "div", "power"]


[docs]def add( A: Union[DiagMatrix, SparseMatrix], B: Union[DiagMatrix, SparseMatrix] ) -> Union[DiagMatrix, SparseMatrix]: r"""Elementwise addition for ``DiagMatrix`` and ``SparseMatrix``, equivalent to ``A + B``. The supported combinations are shown as follows. +--------------+------------+--------------+--------+ | A \\ B | DiagMatrix | SparseMatrix | scalar | +--------------+------------+--------------+--------+ | DiagMatrix | ✅ | ✅ | 🚫 | +--------------+------------+--------------+--------+ | SparseMatrix | ✅ | ✅ | 🚫 | +--------------+------------+--------------+--------+ | scalar | 🚫 | 🚫 | 🚫 | +--------------+------------+--------------+--------+ Parameters ---------- A : DiagMatrix or SparseMatrix Diagonal matrix or sparse matrix B : DiagMatrix or SparseMatrix Diagonal matrix or sparse matrix Returns ------- DiagMatrix or SparseMatrix Diagonal matrix if both :attr:`A` and :attr:`B` are diagonal matrices, sparse matrix otherwise Examples -------- >>> indices = torch.tensor([[1, 0, 2], [0, 1, 2]]) >>> val = torch.tensor([10, 20, 30]) >>> A = dglsp.spmatrix(indices, val) >>> B = dglsp.diag(torch.arange(1, 4)) >>> dglsp.add(A, B) SparseMatrix(indices=tensor([[0, 0, 1, 1, 2], [0, 1, 0, 1, 2]]), values=tensor([1, 20, 10, 2, 33]), shape=(3, 3), nnz=5) """ return A + B
[docs]def sub( A: Union[DiagMatrix, SparseMatrix], B: Union[DiagMatrix, SparseMatrix] ) -> Union[DiagMatrix, SparseMatrix]: r"""Elementwise subtraction for ``DiagMatrix`` and ``SparseMatrix``, equivalent to ``A - B``. The supported combinations are shown as follows. +--------------+------------+--------------+--------+ | A \\ B | DiagMatrix | SparseMatrix | scalar | +--------------+------------+--------------+--------+ | DiagMatrix | ✅ | ✅ | 🚫 | +--------------+------------+--------------+--------+ | SparseMatrix | ✅ | ✅ | 🚫 | +--------------+------------+--------------+--------+ | scalar | 🚫 | 🚫 | 🚫 | +--------------+------------+--------------+--------+ Parameters ---------- A : DiagMatrix or SparseMatrix Diagonal matrix or sparse matrix B : DiagMatrix or SparseMatrix Diagonal matrix or sparse matrix Returns ------- DiagMatrix or SparseMatrix Diagonal matrix if both :attr:`A` and :attr:`B` are diagonal matrices, sparse matrix otherwise Examples -------- >>> indices = torch.tensor([[1, 0, 2], [0, 1, 2]]) >>> val = torch.tensor([10, 20, 30]) >>> A = dglsp.spmatrix(indices, val) >>> B = dglsp.diag(torch.arange(1, 4)) >>> dglsp.sub(A, B) SparseMatrix(indices=tensor([[0, 0, 1, 1, 2], [0, 1, 0, 1, 2]]), values=tensor([-1, 20, 10, -2, 27]), shape=(3, 3), nnz=5) """ return A - B
[docs]def mul( A: Union[SparseMatrix, DiagMatrix, Scalar], B: Union[SparseMatrix, DiagMatrix, Scalar], ) -> Union[SparseMatrix, DiagMatrix]: r"""Elementwise multiplication for ``DiagMatrix`` and ``SparseMatrix``, equivalent to ``A * B``. The supported combinations are shown as follows. +--------------+------------+--------------+--------+ | A \\ B | DiagMatrix | SparseMatrix | scalar | +--------------+------------+--------------+--------+ | DiagMatrix | ✅ | 🚫 | ✅ | +--------------+------------+--------------+--------+ | SparseMatrix | 🚫 | 🚫 | ✅ | +--------------+------------+--------------+--------+ | scalar | ✅ | ✅ | 🚫 | +--------------+------------+--------------+--------+ Parameters ---------- A : SparseMatrix or DiagMatrix or Scalar Sparse matrix or diagonal matrix or scalar value B : SparseMatrix or DiagMatrix or Scalar Sparse matrix or diagonal matrix or scalar value Returns ------- SparseMatrix or DiagMatrix Either sparse matrix or diagonal matrix Examples -------- >>> indices = torch.tensor([[1, 0, 2], [0, 3, 2]]) >>> val = torch.tensor([10, 20, 30]) >>> A = dglsp.spmatrix(indices, val) >>> dglsp.mul(A, 2) SparseMatrix(indices=tensor([[1, 0, 2], [0, 3, 2]]), values=tensor([20, 40, 60]), shape=(3, 4), nnz=3) >>> D = dglsp.diag(torch.arange(1, 4)) >>> dglsp.mul(D, 2) DiagMatrix(val=tensor([2, 4, 6]), shape=(3, 3)) >>> D = dglsp.diag(torch.arange(1, 4)) >>> dglsp.mul(D, D) DiagMatrix(val=tensor([1, 4, 9]), shape=(3, 3)) """ return A * B
[docs]def div( A: Union[SparseMatrix, DiagMatrix], B: Union[DiagMatrix, Scalar] ) -> Union[SparseMatrix, DiagMatrix]: r"""Elementwise division for ``DiagMatrix`` and ``SparseMatrix``, equivalent to ``A / B``. The supported combinations are shown as follows. +--------------+------------+--------------+--------+ | A \\ B | DiagMatrix | SparseMatrix | scalar | +--------------+------------+--------------+--------+ | DiagMatrix | ✅ | 🚫 | ✅ | +--------------+------------+--------------+--------+ | SparseMatrix | 🚫 | 🚫 | ✅ | +--------------+------------+--------------+--------+ | scalar | 🚫 | 🚫 | 🚫 | +--------------+------------+--------------+--------+ Parameters ---------- A : SparseMatrix or DiagMatrix Sparse or diagonal matrix B : DiagMatrix or Scalar Diagonal matrix or scalar value Returns ------- DiagMatrix Diagonal matrix Examples -------- >>> A = dglsp.diag(torch.arange(1, 4)) >>> B = dglsp.diag(torch.arange(10, 13)) >>> dglsp.div(A, B) DiagMatrix(val=tensor([0.1000, 0.1818, 0.2500]), shape=(3, 3)) >>> A = dglsp.diag(torch.arange(1, 4)) >>> dglsp.div(A, 2) DiagMatrix(val=tensor([0.5000, 1.0000, 1.5000]), shape=(3, 3)) >>> indices = torch.tensor([[1, 0, 2], [0, 3, 2]]) >>> val = torch.tensor([1, 2, 3]) >>> A = dglsp.spmatrix(indices, val, shape=(3, 4)) >>> dglsp.div(A, 2) SparseMatrix(indices=tensor([[1, 0, 2], [0, 3, 2]]), values=tensor([0.5000, 1.0000, 1.5000]), shape=(3, 4), nnz=3) """ return A / B
[docs]def power( A: Union[SparseMatrix, DiagMatrix], scalar: Scalar ) -> Union[SparseMatrix, DiagMatrix]: r"""Elementwise exponentiation for ``DiagMatrix`` and ``SparseMatrix``, equivalent to ``A ** scalar``. The supported combinations are shown as follows. +--------------+------------+--------------+--------+ | A \\ B | DiagMatrix | SparseMatrix | scalar | +--------------+------------+--------------+--------+ | DiagMatrix | 🚫 | 🚫 | ✅ | +--------------+------------+--------------+--------+ | SparseMatrix | 🚫 | 🚫 | ✅ | +--------------+------------+--------------+--------+ | scalar | 🚫 | 🚫 | 🚫 | +--------------+------------+--------------+--------+ Parameters ---------- A : SparseMatrix or DiagMatrix Sparse matrix or diagonal matrix scalar : Scalar Exponent Returns ------- SparseMatrix or DiagMatrix Sparse matrix or diagonal matrix, same type as A Examples -------- >>> indices = torch.tensor([[1, 0, 2], [0, 3, 2]]) >>> val = torch.tensor([10, 20, 30]) >>> A = dglsp.spmatrix(indices, val) >>> dglsp.power(A, 2) SparseMatrix(indices=tensor([[1, 0, 2], [0, 3, 2]]), values=tensor([100, 400, 900]), shape=(3, 4), nnz=3) >>> D = dglsp.diag(torch.arange(1, 4)) >>> dglsp.power(D, 2) DiagMatrix(val=tensor([1, 4, 9]), shape=(3, 3)) """ return A**scalar