LapPosEncoder

class dgl.nn.pytorch.gt.LapPosEncoder(model_type, num_layer, k, dim, n_head=1, batch_norm=False, num_post_layer=0)[source]

Bases: Module

Laplacian Positional Encoder (LPE), as introduced in GraphGPS: General Powerful Scalable Graph Transformers

This module is a learned laplacian positional encoding module using Transformer or DeepSet.

Parameters:
  • model_type (str) – Encoder model type for LPE, can only be β€œTransformer” or β€œDeepSet”.

  • num_layer (int) – Number of layers in Transformer/DeepSet Encoder.

  • k (int) – Number of smallest non-trivial eigenvectors.

  • dim (int) – Output size of final laplacian encoding.

  • n_head (int, optional) – Number of heads in Transformer Encoder. Default : 1.

  • batch_norm (bool, optional) – If True, apply batch normalization on raw laplacian positional encoding. Default : False.

  • num_post_layer (int, optional) – If num_post_layer > 0, apply an MLP of num_post_layer layers after pooling. Default : 0.

Example

>>> import dgl
>>> from dgl import LapPE
>>> from dgl.nn import LapPosEncoder
>>> transform = LapPE(k=5, feat_name='eigvec', eigval_name='eigval', padding=True)
>>> g = dgl.graph(([0,1,2,3,4,2,3,1,4,0], [2,3,1,4,0,0,1,2,3,4]))
>>> g = transform(g)
>>> eigvals, eigvecs = g.ndata['eigval'], g.ndata['eigvec']
>>> transformer_encoder = LapPosEncoder(
        model_type="Transformer", num_layer=3, k=5, dim=16, n_head=4
    )
>>> pos_encoding = transformer_encoder(eigvals, eigvecs)
>>> deepset_encoder = LapPosEncoder(
        model_type="DeepSet", num_layer=3, k=5, dim=16, num_post_layer=2
    )
>>> pos_encoding = deepset_encoder(eigvals, eigvecs)
forward(eigvals, eigvecs)[source]
Parameters:
  • eigvals (Tensor) – Laplacian Eigenvalues of shape \((N, k)\), k different eigenvalues repeat N times, can be obtained by using LaplacianPE.

  • eigvecs (Tensor) – Laplacian Eigenvectors of shape \((N, k)\), can be obtained by using LaplacianPE.

Returns:

Return the laplacian positional encodings of shape \((N, d)\), where \(N\) is the number of nodes in the input graph, \(d\) is dim.

Return type:

Tensor