HGTConvο
- class dgl.nn.pytorch.conv.HGTConv(in_size, head_size, num_heads, num_ntypes, num_etypes, dropout=0.2, use_norm=False)[source]ο
Bases:
Module
Heterogeneous graph transformer convolution from Heterogeneous Graph Transformer
Given a graph \(G(V, E)\) and input node features \(H^{(l-1)}\), it computes the new node features as follows:
Compute a multi-head attention score for each edge \((s, e, t)\) in the graph:
\[\begin{split}Attention(s, e, t) = \text{Softmax}\left(||_{i\in[1,h]}ATT-head^i(s, e, t)\right) \\ ATT-head^i(s, e, t) = \left(K^i(s)W^{ATT}_{\phi(e)}Q^i(t)^{\top}\right)\cdot \frac{\mu_{(\tau(s),\phi(e),\tau(t)}}{\sqrt{d}} \\ K^i(s) = \text{K-Linear}^i_{\tau(s)}(H^{(l-1)}[s]) \\ Q^i(t) = \text{Q-Linear}^i_{\tau(t)}(H^{(l-1)}[t]) \\\end{split}\]Compute the message to send on each edge \((s, e, t)\):
\[\begin{split}Message(s, e, t) = ||_{i\in[1, h]} MSG-head^i(s, e, t) \\ MSG-head^i(s, e, t) = \text{M-Linear}^i_{\tau(s)}(H^{(l-1)}[s])W^{MSG}_{\phi(e)} \\\end{split}\]Send messages to target nodes \(t\) and aggregate:
\[\tilde{H}^{(l)}[t] = \sum_{\forall s\in \mathcal{N}(t)}\left( Attention(s,e,t) \cdot Message(s,e,t)\right)\]Compute new node features:
\[H^{(l)}[t]=\text{A-Linear}_{\tau(t)}(\sigma(\tilde(H)^{(l)}[t])) + H^{(l-1)}[t]\]- Parameters:
in_size (int) β Input node feature size.
head_size (int) β Output head size. The output node feature size is
head_size * num_heads
.num_heads (int) β Number of heads. The output node feature size is
head_size * num_heads
.num_ntypes (int) β Number of node types.
num_etypes (int) β Number of edge types.
dropout (optional, float) β Dropout rate.
use_norm (optiona, bool) β If true, apply a layer norm on the output node feature.
Examples
- forward(g, x, ntype, etype, *, presorted=False)[source]ο
Forward computation.
- Parameters:
g (DGLGraph) β The input graph.
x (torch.Tensor) β A 2D tensor of node features. Shape: \((|V|, D_{in})\).
ntype (torch.Tensor) β An 1D integer tensor of node types. Shape: \((|V|,)\).
etype (torch.Tensor) β An 1D integer tensor of edge types. Shape: \((|E|,)\).
presorted (bool, optional) β Whether both the nodes and the edges of the input graph have been sorted by their types. Forward on pre-sorted graph may be faster. Graphs created by
to_homogeneous()
automatically satisfy the condition. Also seereorder_graph()
for manually reordering the nodes and edges.
- Returns:
New node features. Shape: \((|V|, D_{head} * N_{head})\).
- Return type:
torch.Tensor