dgl.graphbolt.fused_csc_sampling_graphο
- dgl.graphbolt.fused_csc_sampling_graph(csc_indptr: Tensor, indices: Tensor, node_type_offset: tensor | None = None, type_per_edge: tensor | None = None, node_type_to_id: Dict[str, int] | None = None, edge_type_to_id: Dict[str, int] | None = None, node_attributes: Dict[str, tensor] | None = None, edge_attributes: Dict[str, tensor] | None = None) FusedCSCSamplingGraph [source]ο
Create a FusedCSCSamplingGraph object from a CSC representation.
- Parameters:
csc_indptr (torch.Tensor) β Pointer to the start of each row in the indices. An integer tensor with shape (total_num_nodes+1,).
indices (torch.Tensor) β Column indices of the non-zero elements in the CSC graph. An integer tensor with shape (total_num_edges,).
node_type_offset (Optional[torch.tensor], optional) β Offset of node types in the graph, by default None.
type_per_edge (Optional[torch.tensor], optional) β Type ids of each edge in the graph, by default None.
node_type_to_id (Optional[Dict[str, int]], optional) β Map node types to ids, by default None.
edge_type_to_id (Optional[Dict[str, int]], optional) β Map edge types to ids, by default None.
node_attributes (Optional[Dict[str, torch.tensor]], optional) β Node attributes of the graph, by default None.
edge_attributes (Optional[Dict[str, torch.tensor]], optional) β Edge attributes of the graph, by default None.
- Returns:
The created FusedCSCSamplingGraph object.
- Return type:
Examples
>>> ntypes = {'n1': 0, 'n2': 1, 'n3': 2} >>> etypes = {'n1:e1:n2': 0, 'n1:e2:n3': 1} >>> csc_indptr = torch.tensor([0, 2, 5, 7, 8]) >>> indices = torch.tensor([1, 3, 0, 1, 2, 0, 3, 2]) >>> node_type_offset = torch.tensor([0, 1, 2, 4]) >>> type_per_edge = torch.tensor([0, 1, 0, 1, 1, 0, 0, 0]) >>> graph = graphbolt.fused_csc_sampling_graph(csc_indptr, indices, ... node_type_offset=node_type_offset, ... type_per_edge=type_per_edge, ... node_type_to_id=ntypes, edge_type_to_id=etypes, ... node_attributes=None, edge_attributes=None,) >>> print(graph) FusedCSCSamplingGraph(csc_indptr=tensor([0, 2, 5, 7, 8]), indices=tensor([1, 3, 0, 1, 2, 0, 3, 2]), total_num_nodes=4, num_edges={'n1:e1:n2': 5, 'n1:e2:n3': 3}, node_type_offset=tensor([0, 1, 2, 4]), type_per_edge=tensor([0, 1, 0, 1, 1, 0, 0, 0]), node_type_to_id={'n1': 0, 'n2': 1, 'n3': 2}, edge_type_to_id={'n1:e1:n2': 0, 'n1:e2:n3': 1},)