dgl.DGLGraph.adjο
- DGLGraph.adj(etype=None, eweight_name=None)[source]ο
Get the adjacency matrix of the graph.
- Parameters:
etype (str or (str, str, str), optional) β
The type names of the edges. The allowed type name formats are:
(str, str, str)
for source node type, edge type and
destination node type. * or one
str
edge type name if the name can uniquely identify atriplet format in the graph.
Can be omitted if the graph has only one type of edges.
eweight_name (str, optional) β The name of edge feature used as the non-zero values. If not given, the non-zero values are all 1.
- Returns:
The adjacency matrix.
- Return type:
Examples
The following example uses PyTorch backend.
>>> import dgl >>> import torch
>>> g = dgl.graph(([0, 1, 2], [1, 2, 3])) >>> g.adj() SparseMatrix(indices=tensor([[0, 1, 2], [1, 2, 3]]), values=tensor([1., 1., 1.]), shape=(4, 4), nnz=3)
>>> g = dgl.heterograph({ ... ('user', 'follows', 'user'): ([0, 1], [0, 1]), ... ('developer', 'develops', 'game'): ([0, 1], [0, 2]) ... })
>>> g.adj(etype='develops') SparseMatrix(indices=tensor([[0, 1], [0, 2]]), values=tensor([1., 1.]), shape=(2, 3), nnz=2) >>> g.edata['h'] = {('user', 'follows', 'user'): torch.tensor([3, 2])} >>> g.adj(etype='follows', eweight_name='h') SparseMatrix(indices=tensor([[0, 1], [0, 1]]), values=tensor([3, 2]), shape=(2, 2), nnz=2)