JumpingKnowledgeΒΆ
-
class
dgl.nn.pytorch.utils.
JumpingKnowledge
(mode='cat', in_feats=None, num_layers=None)[source]ΒΆ Bases:
torch.nn.modules.module.Module
The Jumping Knowledge aggregation module from Representation Learning on Graphs with Jumping Knowledge Networks
It aggregates the output representations of multiple GNN layers with
concatenation
\[h_i^{(1)} \, \Vert \, \ldots \, \Vert \, h_i^{(T)}\]or max pooling
\[\max \left( h_i^{(1)}, \ldots, h_i^{(T)} \right)\]or LSTM
\[\sum_{t=1}^T \alpha_i^{(t)} h_i^{(t)}\]with attention scores \(\alpha_i^{(t)}\) obtained from a BiLSTM
- Parameters
mode (str) β The aggregation to apply. It can be βcatβ, βmaxβ, or βlstmβ, corresponding to the equations above in order.
in_feats (int, optional) β This argument is only required if
mode
is'lstm'
. The output representation size of a single GNN layer. Note that all GNN layers need to have the same output representation size.num_layers (int, optional) β This argument is only required if
mode
is'lstm'
. The number of GNN layers for output aggregation.
Examples
>>> import dgl >>> import torch as th >>> from dgl.nn import JumpingKnowledge
>>> # Output representations of two GNN layers >>> num_nodes = 3 >>> in_feats = 4 >>> feat_list = [th.zeros(num_nodes, in_feats), th.ones(num_nodes, in_feats)]
>>> # Case1 >>> model = JumpingKnowledge() >>> model(feat_list).shape torch.Size([3, 8])
>>> # Case2 >>> model = JumpingKnowledge(mode='max') >>> model(feat_list).shape torch.Size([3, 4])
>>> # Case3 >>> model = JumpingKnowledge(mode='max', in_feats=in_feats, num_layers=len(feat_list)) >>> model(feat_list).shape torch.Size([3, 4])