dgl.sparse.div¶
-
dgl.sparse.
div
(A: dgl.sparse.sparse_matrix.SparseMatrix, B: Union[dgl.sparse.sparse_matrix.SparseMatrix, numbers.Number, torch.Tensor]) → dgl.sparse.sparse_matrix.SparseMatrix[source]¶ Elementwise division for
SparseMatrix
, equivalent toA / B
.If both
A
andB
are sparse matrices, both of them should be diagonal matrices.- Parameters
A (SparseMatrix) – Sparse matrix
B (SparseMatrix or Scalar) – Sparse matrix or scalar value
- Returns
Sparse matrix
- Return type
Examples
>>> A = dglsp.diag(torch.arange(1, 4)) >>> B = dglsp.diag(torch.arange(10, 13)) >>> dglsp.div(A, B) SparseMatrix(indices=tensor([[0, 1, 2], [0, 1, 2]]), values=tensor([0.1000, 0.1818, 0.2500]), shape=(3, 3), nnz=3)
>>> A = dglsp.diag(torch.arange(1, 4)) >>> dglsp.div(A, 2) SparseMatrix(indices=tensor([[0, 1, 2], [0, 1, 2]]), values=tensor([0.5000, 1.0000, 1.5000]), shape=(3, 3), nnz=3)
>>> indices = torch.tensor([[1, 0, 2], [0, 3, 2]]) >>> val = torch.tensor([1, 2, 3]) >>> A = dglsp.spmatrix(indices, val, shape=(3, 4)) >>> dglsp.div(A, 2) SparseMatrix(indices=tensor([[1, 0, 2], [0, 3, 2]]), values=tensor([0.5000, 1.0000, 1.5000]), shape=(3, 4), nnz=3)